Double Integrals (Part II)

Liming Pang

1 Double Integral on General Regions

In many cases, we want to compute the volume of some solid whose base is not a rectangle. In such situation, we need to define and compute the double integrals over a general region. The idea is to extend the given function to a larger rectangular domain by assigning the value 0 to the points out of D:

We define $\iint_D f(x, y) dA = \iint_R \tilde{f}(x, y) dA$, where R is a rectangular region enclosing D and

$$\tilde{f}(x,y) = \begin{cases} f(x,y), \text{ if } (x,y) \text{ is in } D\\ 0, \text{ if } (x,y) \text{ is not in } D \end{cases}$$

Proposition 1. D is a region on the xy-plane, then:

- 1. $\iint_D f(x, y) + g(x, y) \, dA = \iint_D f(x, y) \, dA + \iint_D g(x, y) \, dA$ 2. $\iint_D cf(x, y) \, dA = c \iint_D f(x, y) \, dA$
- 3. If $f(x,y) \ge g(x,y)$ on D, then $\iint_D f(x,y) dA \ge \iint_D g(x,y) dA$

A region D is said to be of Type I if it is bounded by x = a, x = b, $y = g_1(x)$ and $y = g_2(x)$, where g_1, g_2 are continuous functions in x and $g_1(x) \leq g_2(x)$ on [a, b].

The double integral over a Type I region can be computed as follows:

Theorem 2.

$$\iint_{D} f(x,y) \, dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) \, dy \, dx$$

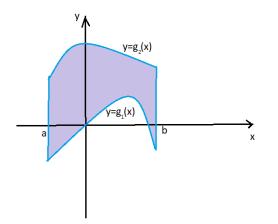


Figure 1: Type I region

Proof. We use a rectangle $R = [a, b] \times [c, d]$ to enclose this region D.

$$\iint_{D} f(x,y) \, dA = \iint_{R} \tilde{f}(x,y) \, dA$$

= $\int_{a}^{b} \int_{c}^{d} \tilde{f}(x,y) \, dy \, dx$
= $\int_{a}^{b} (\int_{c}^{g_{1}(x)} \tilde{f}(x,y) \, dy + \int_{g_{1}(x)}^{g_{2}(x)} \tilde{f}(x,y) \, dy + \int_{g_{2}(x)}^{d} \tilde{f}(x,y) \, dy) \, dx$
= $\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) \, dy \, dx$

Similarly, we can define a plane region to be of Type II if it it bounded by $y = c, y = d, x = h_1(y)$ and $x = h_2(y)$, where h_1, h_2 are continuous functions on [c,d] and $h_1(y) \le h_2(y)$ on [c,d]. Then the integral on D is given by

Theorem 3.

$$\iint_{D} f(x,y) \, dA = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x,y) \, dx \, dy$$

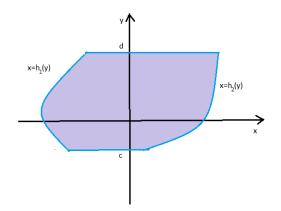
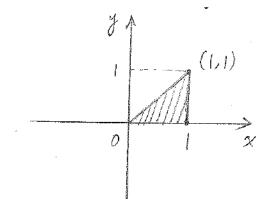


Figure 2: Type II region

Example 4. Compute the integral $\iint_D xy \, dA$ over the triangular shaded region shown in the following figure.



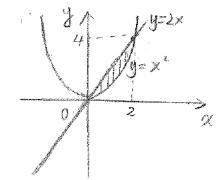
Method I:

$$\iint_{D} f(x,y) \, dA = \int_{0}^{1} \int_{0}^{x} xy \, dy \, dx = \int_{0}^{1} \left(\frac{x}{2}y^{2}\Big|_{0}^{x}\right) dx$$
$$= \int_{0}^{1} \frac{x^{3}}{2} \, dx$$
$$= \frac{1}{8}$$

Method II:

$$\iint_{D} f(x,y) dA = \int_{0}^{1} \int_{y}^{1} xy \, dx \, dy$$
$$= \int_{0}^{1} \left(\frac{y}{2}x^{2}\right|_{y}^{1} dy$$
$$= \int_{0}^{1} \frac{y - y^{3}}{2} \, dy$$
$$= \frac{1}{8}$$

Example 5. Find the volume of the solid that lies under the graph $z = f(x, y) = x^2 + y^2$ and above the region D in xy-plane bounded by the line y = 2x and the parabola $y = x^2$.



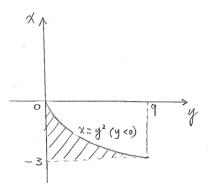
$$\iint_{D} f(x,y) \, dA = \int_{0}^{2} \int_{x^{2}}^{2x} x^{2} + y^{2} \, dy \, dx$$
$$= \int_{0}^{2} \left(-\frac{x^{6}}{3} - x^{4} + \frac{14}{3}x^{3}\right) \, dx$$
$$= \frac{216}{35}$$

Example 6. Rewrite the integral in the above example in the form of $\iint f(x, y) dx dy$

$$\iint_{D} f(x,y) \, dA = \int_{0}^{4} \int_{\frac{y}{2}}^{\sqrt{y}} x^{2} + y^{2} \, dx \, dy$$

Example 7. Rewrite the iterated integral $\int_{-3}^{0} \int_{0}^{y^2} f(x, y) dx dy$ in the form of $\int \int f(x, y) dy dx$

By the given iterated integral, we can recover the region D to be the following:



So the integral can be written as

$$\int_{0}^{9} \int_{-3}^{-\sqrt{x}} f(x,y) \, dy \, dx$$

Proposition 8. Given a region D on xy-plane, its area is

$$\iint_D 1 \, dA$$

Example 9. Compute the area bounded between the curve $x = y^2$ and x = 4

$$\iint_D 1 \, dA = \int_0^4 \int_{-\sqrt{x}}^{\sqrt{x}} 1 \, dy \, dx = \int_0^4 2\sqrt{x} \, dx = \frac{32}{3}$$

An important application of double integral is to compute the mass of some thin object.

Proposition 10. If a thin object is put on the xy-plane, it occupies a region D. If the density function of this object is $\rho(x, y)$, then its mass is given by

$$\iint_D \rho(x,y) \, dA$$