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1 Double Integral on General Regions

In many cases, we want to compute the volume of some solid whose base is
not a rectangle. In such situation, we need to define and compute the double
integrals over a general region. The idea is to extend the given function to a
larger rectangular domain by assigning the value 0 to the points out of D:

We define
∫∫

D
f(x, y) dA =

∫∫
R
f̃(x, y) dA, where R is a rectangular re-

gion enclosing D and

f̃(x, y) =

{
f(x, y), if (x, y) is in D

0, if (x, y) is not in D

Proposition 1. D is a region on the xy-plane, then:

1.
∫∫

D
f(x, y) + g(x, y) dA =

∫∫
D
f(x, y) dA+

∫∫
D
g(x, y) dA

2.
∫∫

D
cf(x, y) dA = c

∫∫
D
f(x, y) dA

3. If f(x, y) ≥ g(x, y) on D, then
∫∫

D
f(x, y) dA ≥

∫∫
D
g(x, y) dA

A region D is said to be of Type I if it is bounded by x = a, x = b,
y = g1(x) and y = g2(x), where g1, g2 are continuous functions in x and
g1(x) ≤ g2(x) on [a, b].

The double integral over a Type I region can be computed as follows:

Theorem 2. ∫∫
D

f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx
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Figure 1: Type I region

Proof. We use a rectangle R = [a, b]× [c, d] to enclose this region D.∫∫
D

f(x, y) dA =

∫∫
R

f̃(x, y) dA

=

∫ b

a

∫ d

c

f̃(x, y) dy dx

=

∫ b

a

(

∫ g1(x)

c

f̃(x, y) dy +

∫ g2(x)

g1(x)

f̃(x, y) dy +

∫ d

g2(x)

f̃(x, y) dy) dx

=

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx

Similarly, we can define a plane region to be of Type II if it it bounded by
y = c,y = d, x = h1(y) and x = h2(y), where h1, h2 are continuous functions
on [c, d] and h1(y) ≤ h2(y) on [c, d].

Then the integral on D is given by

Theorem 3. ∫∫
D

f(x, y) dA =

∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy
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Figure 2: Type II region

Example 4. Compute the integral
∫∫

D
xy dA over the triangular shaded re-

gion shown in the following figure.

Method I:∫∫
D

f(x, y) dA =

∫ 1

0

∫ x

0

xy dy dx =

∫ 1

0

(
x

2
y2
∣∣∣∣x
0

) dx

=

∫ 1

0

x3

2
dx

=
1

8
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Method II: ∫∫
D

f(x, y) dA =

∫ 1

0

∫ 1

y

xy dx dy

=

∫ 1

0

(
y

2
x2
∣∣∣∣1
y

) dy

=

∫ 1

0

y − y3

2
dy

=
1

8

Example 5. Find the volume of the solid that lies under the graph z =
f(x, y) = x2 + y2 and above the region D in xy-plane bounded by the line
y = 2x and the parabola y = x2.

∫∫
D

f(x, y) dA =

∫ 2

0

∫ 2x

x2

x2 + y2 dy dx

=

∫ 2

0

(−x
6

3
− x4 +

14

3
x3) dx

=
216

35

Example 6. Rewrite the integral in the above example in the form of
∫∫

f(x, y) dx dy∫∫
D

f(x, y) dA =

∫ 4

0

∫ √y
y
2

x2 + y2 dx dy
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Example 7. Rewrite the iterated integral
∫ 0

−3

∫ y2

0
f(x, y) dx dy in the form of∫ ∫

f(x, y) dy dx

By the given iterated integral, we can recover the region D to be the fol-
lowing:

So the integral can be written as∫ 9

0

∫ −√x
−3

f(x, y) dy dx

Proposition 8. Given a region D on xy-plane, its area is∫∫
D

1 dA

Example 9. Compute the area bounded between the curve x = y2 and x = 4

∫∫
D

1 dA =

∫ 4

0

∫ √x
−
√
x

1 dy dx =

∫ 4

0

2
√
x dx =

32

3

An important application of double integral is to compute the mass of
some thin object.

Proposition 10. If a thin object is put on the xy-plane, it occupies a region
D. If the density function of this object is ρ(x, y), then its mass is given by∫∫

D

ρ(x, y) dA
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